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Abstract

We consider the problem of how to detect cognate pairs of proteins that bind when each belongs to a large family of
paralogs. To illustrate the problem, we have undertaken a genomewide analysis of interactions of members of the PE and
PPE protein families of Mycobacterium tuberculosis. Our computational method uses structural information, operon
organization, and protein coevolution to infer the interaction of PE and PPE proteins. Some 289 PE/PPE complexes were
predicted out of a possible 5,590 PE/PPE pairs genomewide. Thirty-five of these predicted complexes were also found to
have correlated mRNA expression, providing additional evidence for these interactions. We show that our method is
applicable to other protein families, by analyzing interactions of the Esx family of proteins. Our resulting set of predictions is
a starting point for genomewide experimental interaction screens of the PE and PPE families, and our method may be
generally useful for detecting interactions of proteins within families having many paralogs.
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Introduction

Tuberculosis remains a health problem of global importance

[1]. Despite the availability of the genome sequence of

Mycobacterium tuberculosis (Mtb) for nearly a decade [2], the biology

of the pathogen, particularly the molecular mechanisms by which

it achieves virulence, remains poorly understood. Probing the

molecular interaction network of Mtb therefore is an important

step in the fight against tuberculosis disease.

The PE and PPE Families
The PE and PPE gene families in Mtb make up nearly 10% of

the bacterium’s coding DNA [2]. The two families combined have

about 150 members, amounting to 4% of the open reading frames

(ORFs) in Mtb. The PE and PPE gene families account for much

of the genomic difference between Mtb and other (nonpathogenic)

mycobacterial genomes [3,4]. Therefore it is thought that they

may have a role in Mtb’s virulence and host-specificity. A subset of

PE proteins is displayed on the bacterium’s cell surface [5], can

elicit an immune response [6], and may be a source of antigenic

diversity for Mtb [7]. PPE proteins have also been found on the cell

surface [8,9], may be secreted [10], and can confer virulence [11].

These studies indicate the likely importance of the PE and PPE

gene families in pathogenesis. More extensive characterization of

their function, interactions, and roles in infection are therefore

important areas for investigation.

Genome analysis suggests that the PE and PPE families are

functionally linked [12–14]. Pairs of PE and PPE genes are

frequently found adjacent on the Mtb genome, and the structure of

a complex of one such PE/PPE protein pair was recently

characterized [13]. These results indicate that there may be many

other instances of interactions between PE and PPE proteins.

However, with only one complex characterized so far, it remains

unclear which specific members of the two families interact. The

87 PE and 65 PPE proteins (depending on similarity threshold) in

the Mtb H37Rv genome generate ,6,000 possible pairwise

combinations. It may be that dozens of biologically relevant PE/

PPE complexes remain to be characterized. Because the PE and

PPE families can interact with the host immune system [5,6,11],

combinatorial formation of complexes might enable immune

evasion during tuberculosis infection. Mapping the PE/PPE

interaction network is therefore of critical importance for

accelerating drug discovery. Because PE and PPE proteins are

difficult to express and purify experimentally [13], new compu-

tational methods are needed to detect likely PE/PPE complexes

and efficiently prioritize experiments.

Detection of Interacting PE and PPE Proteins
Perhaps the most straightforward bioinformatic approach for

detecting PE/PPE complexes is to simply predict interaction of the

PE/PPE pairs found in the same operon [15–18]. Some 14 pairs of

PE and PPE genes, including the one complex that has been
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structurally characterized to date [13], are found adjacent on the

genome, in the same orientation, with minimal intergenic distance,

and with the PE 59 to (upstream of) the PPE (the PE proteins in

such pairs do not include any of the repeat-containing PE_PGRS

proteins). Because of this recurring genome organization motif,

such pairs are likely expressed in the same operon [19]. However,

these same-operon PE/PPE pairs comprise less than 10% of the

total number of PE and PPE genes in Mtb. The majority of PE and

PPE proteins are found unpaired in the genome, and it is possible

that some of these interact despite not having genomic proximity.

Computationally detecting PE/PPE complexes not found by the

operon method is therefore an important challenge.

The tendency for proteins to coevolve with their interaction

partners has been described [20–23], and bioinformatic methods

to detect protein coevolution have therefore been proposed for

predicting protein interactions [24]. The idea is to exploit the

correlation of the phylogenetic distance matrices of two protein

families whose members are known from experiments to interact.

Known interacting proteins tend to be found at analogous regions

of their respective phylogenetic trees [20,24,25] (which can also be

represented as distance matrices). Such methods can accurately

pair ligands with receptors [24], and could potentially be used to

infer interactions between the PE and PPE families. However, a

difficulty of applying these methods in our case is that

benchmarking predictions requires a set of experimentally

determined interactions, and currently only a single known

example of a PE/PPE complex exists [13]. Our challenge,

therefore, for the computational prediction of PE/PPE interac-

tions is the evaluation of predictions given the currently limited

number of known PE/PPE interactions.

We combined the operon method, coevolution analysis, and

structural knowledge of interacting domains to develop a

coevolution-based strategy to predict PE/PPE complexes in the

Mtb H37Rv strain. Some 289 predicted complexes resulted from

the application of our method. To validate the predictions, we

used several published mRNA expression datasets from Mtb to

assess PE/PPE coexpression in vivo. A significant overlap was seen

between coevolved and coexpressed PE/PPE gene pairs, support-

ing the coevolution-based predictions, and resulting in a high-

confidence list of possible complexes. To demonstrate the

extensibility of our method to other protein families, we performed

a similar analysis of interactions of the ESAT-6/CFP-10 (Esx)

family of proteins. Our results are a starting point for experimental

genomewide screens of PE/PPE and Esx complexes, and our

method may be applicable to other functionally linked protein

families in Mtb and other microbial pathogens.

Results

Assumptions
We assumed that each interacting pair of PE/PPE proteins

must have complementary interfaces, and that the residues in these

interfaces may coevolve due to positive selective pressure on the

interaction. Although we currently do not have sufficient data

from PE/PPE complexes to accurately predict residue-residue

interactions from sequence using correlated mutations analysis

[26–29], we can delineate the likely interacting regions by their

similarity to the structurally characterized PE/PPE interacting

domains [13].

We assumed that PE/PPE gene pairs adjacent on the genome,

and in the same orientation, are in expression operons, as has been

shown for Rv2431c/Rv2430c [13]. The components of protein

complexes and metabolic pathways in prokaryotes are often

located together on the genome in operons [19]. These operons

are transcribed as a single, polycistronic mRNA. Genes located on

an operon usually function together, and often form protein

complexes. We predict thirteen other PE/PPE gene pairs lie in

operons (Figure 1A) based on their short intergenic distance

(,100 bp) and same transcription direction. These pairs have a

high degree of coexpression (average mRNA correlation 0.59 for

operon-paired, 0.05 for genomewide PE/PPE gene pairs, see

Materials and methods), suggesting that these PE/PPE pairs are

indeed in operons.

Finally, we assumed that PE/PPE pairs in operons are likely to

interact in a manner similar to the structurally characterized,

operon-coded, PE/PPE complex of Rv2431c/Rv2430c [13]. To

support our assumption that bacterial operons tend to code

protein complexes, we analyzed the tendency for annotated E. coli

protein complexes to reside in operons in the EcoCyc database

[30]. We extracted 280 complexes, involving 692 proteins, from

EcoCyc. We asked what fraction of protein pairs found in

complexes also had their genes in the same operon, and found this

to be 49% (942 protein pairs in operons out of 1918 protein pairs

in complexes). To assess the significance of this result, we shuffled

the identity of the genes in complexes by replacing each with a

random E. coli gene, and re-assessing the overlap. One thousand

shufflings were performed and an overlap of 49% was never

achieved; in fact, the highest overlap obtained was 2%. We

conclude there is a significant tendency for bacterial protein

complexes to be coded in the same operon. While this does not

guarantee that proteins coded in operons interact, given a known

example of an operon-coded PE/PPE complex, we might expect

PE/PPE pairs similarly organized in operons to interact.

Schematic Explanation of Our Method
Figure 1 illustrates our method for detecting pairs of coevolved

PE and PPE genes (and thus, possible interacting proteins).

Figure 1A shows all PE and PPE gene pairs that lie in the same

orientation of 59 PE R PPE 39 with no more than 100 bp

separation between the PE and PPE genes. These PE/PPE pairs are

likely within the same operon [15–18], and are summarized in

Table 1. We refer to these as the ‘operon pairs’; they form the

training data for our method. PE and PPE protein sequences coded

by the operon pairs are aligned to the sequence of the appropriate

Author Summary

We consider the problem of detecting protein interactions
from genome sequences when the potential interacting
partners belong to large families of similar (homologous)
proteins. Many computational methods for predicting
protein interactions rely on similarity to a pair of known
interacting proteins. When the proteins in question are
members of large groups of similar proteins within the
same organism (paralogs), the problem of inferring the
correct interactions becomes difficult. To illustrate the
problem, we undertook prediction of interactions of some
highly expanded protein families of Mycobacterium tuber-
culosis (Mtb), which are believed to contribute to the
bacterium’s ability to infect human beings. To generate
predictions, we analyzed patterns of coevolution in a small
subset of likely interacting proteins, and extended these
patterns to predict additional interactions throughout the
genome. Our results provide a map for experimental
probes of the Mtb interaction network, for the benefit of
drug and vaccine discovery. More generally, our procedure
is applicable to detecting interactions of proteins that
belong to large families of paralogs in any organism with a
sequenced genome.

Interactions of the PE/PPE Proteins of Mtb
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subunit of the PE/PPE complex of Rv2431c/Rv2430c (Figure 1B).

Next, the structure-based multiple alignment is used to generate

phylogenetic distance matrices, which contain pairwise protein

similarity relationships (Figure 1C). Notice that each equivalent row

in the matrix is an operon-paired (and hence assumed interacting)

PE/PPE pair. These are called the ‘reference matrices’. For all

(operon-paired or otherwise) PE and PPE protein sequences in the

Mtb genome, distance vectors to the reference matrices are

generated (Figure 1D). The correlation between these vectors, Cij,

is a measure of the PE/PPE pair’s possible coevolution. Next, Cij

scores are further processed (Figure 1E) to yield Sij, the paralog

matching score for the predicted complex of PEi and PPEj.

The probable interacting regions of all PE and PPE proteins in

the Mtb genome were delineated. This was done using the

Figure 1. Overview of method for prediction of PE/PPE complexes. (A) PE/PPE operon pairs are identified. (B) Protein sequences of PE/PPE
operon pairs are aligned to the known PE/PPE structure [13]. (C) Phylogenetic distance matrices for operon pairs are generated from the multiple
alignments. (D) Coevolution of all genomewide PE/PPE pairs is evaluated by comparing distance vectors of length 14, consisting of the sequence
distances between each protein and its 14 homologs in the PE or PPE reference matrix. (E) Coevolution correlations are further processed to generate
predicted PE/PPE complexes.
doi:10.1371/journal.pcbi.1000174.g001

Interactions of the PE/PPE Proteins of Mtb
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ClustalW program [31] to perform a multiple sequence alignment

of each protein family to a secondary structure profile derived

using the DSSP program [32] on the appropriate subunit of the

known PE/PPE complex structure. The secondary structural

alignment was motivated by the observation that the PE and PPE

proteins of known structure are composed of long a-helices

interspersed with turns and loops, and our intuition that insertions

and deletions would preferentially occur in regions outside the

helices. The alignment was visually inspected to remove outlying

or poorly-aligned sequences. All remaining PE and PPE sequences

in the alignment were truncated to eliminate regions not aligned to

the structure. In many cases both the PE and PPE proteins

contained additional domains in their C-terminal regions,

including the PGRS repeats in PE_PGRS proteins. All subsequent

sequence analysis in this work was performed with these truncated

sequences. We reasoned that limiting our analysis to homologous

interacting domains would facilitate detection of coevolution

relevant to protein interaction, and would therefore not be

confused by spurious coevolution signals from regions not involved

in PE/PPE interface. This additional truncation step was

performed because we observed that most PPE, and some PE,

domains have additional domains, low complexity regions, or

membrane helices C-terminal to the conserved interacting

domains. The resulting alignments are provided in the Supporting

Information (Datasets S1 and S2).

Phylogenetic Distances of PE/PPE Pairs
Phylogenetic distance matrices for the subset of PE and PPE

proteins linked in the 14 operons (Table 1) were constructed using

the ClustalW program [31]. For each of the PE and PPE families,

the 14 sequences in operon pairs were manually extracted from

the full-family alignment. The 14-sequence subalignments were

then loaded into ClustalW to generate 14614 distance matrices.

Phylogenetic distance matrices represent the pairwise distance

between protein sequences. In ClustalW, pairwise distances

between sequences are measured by the fraction of mismatches

in ungapped positions of an alignment of two sequences. If our

assumption that operon-paired PE/PPE genes code complexes

were correct, we reasoned that there would be a correlation of the

two distance matrices when the genes of both matrices are

respectively ordered by the genomic position of the operon in

which they occur (Figure 1C). Such a correlation between matrices

would be consistent with previous analyses demonstrating

correlation of distance matrices for known interacting proteins

[20]. We indeed found that the PE and PPE matrices were

correlated, with a Pearson correlation coefficient of 0.84.

To assess the significance of the correlation of the PE and PPE

matrices, we performed random shuffling of the matrices’ gene

order, thus removing any mapping of paired genomic position

between the matrices. One million shuffling steps were performed,

and the frequency with which the shuffled correlation exceeded

the correlation from the operon-ordered matrices was recorded.

The correlation of 0.84 was never exceeded in 106 matrix shuffling

steps (the maximum correlation in any shuffling was 0.20). These

results suggest that the PE and PPE matrices, ordered by operon

position, may represent an optimal pairing of PE/PPE proteins,

and, in light of previous findings of correlated distance matrices of

interacting proteins [20], support the hypothesis that PE/PPE

operons code complexes.

The correlation of the operon-ordered distance matrices can be

visualized using phylogenetic trees to provide an intuitive feeling

for the results. To illustrate this, we generated trees from distance

matrices in the ClustalW program (Figure 2). In the two trees,

operon-paired PE and PPE proteins are in the same-colored

shaded region, illustrating similar topologies of the trees. This

qualitative tree similarity illustrates the notion of coevolution of the

PE and PPE families.

Predictive Scores
We next used the correlated 14614 PE and PPE distance

matrices as reference matrices to evaluate pairwise correlations

between the 86 PE proteins and 65 PPE proteins in the Mtb

genome, excluding those present in operon pairs. This was done

by generating a distance vector of length 14 for each protein in a

PE/PPE pair. The vector contained the distance between the

protein being tested and the 14 members of the appropriate

Table 1. The 14 pairs of PE and PPE genes linked by the operon method.

PE ORF PE name Length (aa) Strand PPE ORF PPE name Length (aa) Strand Genomic distance (bp)

Rv0285 PE5 102 + Rv0286 PPE4 513 + 3

Rv0916c PE7 99 2 Rv0915c PPE14 423 2 15

Rv1040c PE8 275 2 Rv1039c PPE15 391 2 77

Rv1169c PE11 100 2 Rv1168c PPE17 346 2 18

Rv1195 PE13 99 + Rv1196 PPE18 391 + 47

Rv1386 PE15 102 + Rv1387 PPE20 539 + 3

Rv1788 PE18 99 + Rv1789 PPE26 393 + 14

Rv1806 PE20 99 + Rv1807 PPE31 399 + 27

Rv2107 PE22 98 + Rv2108 PPE36 243 + 56

Rv2431c PE25 99 2 Rv2430c PPE41 194 2 47

Rv2769c PE27 275 2 Rv2768c PPE43 394 2 80

Rv3477 PE31 98 + Rv3478 PPE60 393 + 37

Rv3622c PE32 99 2 Rv3621c PPE65 413 2 10

Rv3872 PE35 99 + Rv3873 PPE68 368 + 31

These pairs of PE and PPE genes are unique in that they are oriented with the PE protein 59 (upstream) to the PPE protein, and with no more than 100 base pairs
intergenic separation between them. We refer to these as ‘operon pairs’; they make up the training data for our method.
doi:10.1371/journal.pcbi.1000174.t001

Interactions of the PE/PPE Proteins of Mtb
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reference matrix (PE or PPE). The Pearson correlation for the two

vectors was calculated to obtain a measure of the coevolution of

the test PE/PPE pair (Figure 1E). Notice that here we are taking

the correlation of two vectors of length 14, as opposed to our

earlier calculation of the correlation of the two 14614 matrices.

The coevolution of 5590 PE/PPE pairs was evaluated using this

approach. We define the coefficient Cij, as the correlation which

measures the coevolution of PEi with PPEj.

Pairwise correlations between all PEi and PPEj (Cij) were further

processed using a reciprocal ranking procedure, to produce a

predictive paralog matching score, Sij. This was done because we

noticed that many PE/PPE pairs had high Cij values (average

Cij = 0.54). The distribution of Cij is shown in Figure 3A (blue bars).

From the histogram, it is clear that a great number of PE/PPE

pairs have a high Cij. This may reflect the overall coevolution of

the two families, but is not of use in a prediction scheme, as nearly

all pairs have a high score. Such a result is inconsistent with our

intuition that in a large collection of proteins, only a relatively

small number of the possible pairs should interact. Further, we

found that the Cij distributions for operon pairs and all PE/PPE

pairs do not differ significantly (Kolmogorov–Smirnoff (KS) test,

a = 0.05, k = 0.29, P = 0.16). In the reciprocal ranking procedure,

the predicted complex of PEi and PPEj was assigned a high Sij only

if PEi and PPEj were mutually at the top of each protein’s list of

interaction partners ranked by Cij. In other words, PEi and PPEj

were required to be reciprocally the most coevolved partners in

order to get a high Sij (see Materials and methods). Figure 3A,

shows the distribution of Sij scores (red bars). The distribution of Sij

suggests it is a more useful measure than Cij for complex

prediction, as the bulk of the Sij scores are low (reflecting that in

a large dataset, most protein pairs do not form complexes). The

operon pairs have a significantly higher Sij than PE/PPE pairs

overall (KS test, a = 0.05, k = 0.97, P–value,.0001), a result

illustrated in Figure 3B. We conclude that the reciprocally ranked

coevolution score, Sij, performs better than Cij for predicting

protein interactions.

Evaluation of Predictive Scores
To evaluate the predictive value of the two pairwise PE/PPE

scores, Cij and Sij, we assessed recovery of the 14 operon linked

PE/PPE pairs used to generate the reference matrices. Of the 14

pairs, all were given Sij scores in the top 5% implying the method

could be used to detect complexes with reasonably high accuracy.

In contrast, only 3/14 (20%) of the operon pairs were given Cij

scores in the top 5%. A mere 8/14 pairs (60%) had Cij scores

above the median, implying poor recovery by the raw distance

vector correlations. The relationship between Cij and Sij is

illustrated in Figure 3B. The distribution of scores shows that Sij

as a predictor of PE/PPE complexes gives much better recovery of

operon-paired PE/PPE proteins than Cij, and therefore is likely a

better indicator of interaction.

To further evaluate prediction accuracy, and to determine a

prediction score threshold, we compared the sensitivity (also called

true positive rate or TPR) and 1-specificity (also called the false

positive rate or FPR) for Sij and Cij. Sets of positive and negative

interactions were defined, and an Sij threshold of 0.75 was found to

capture the best balance between sensitivity and specificity

(Materials and methods). Applying a prediction criterion of

Sij$0.75 gave 289 PE/PPE pairs or roughly 5% of the possible

5,590 PE/PPE pairs genomewide. We therefore proceeded with

our analysis by taking the predictions with Sij scores in the top 5%.

Correlation of mRNA Expression
To see if the coevolution-based predictions were biologically

sensible, we analyzed correlations in mRNA expression (which we

call ‘coexpression’) of possible interacting PE/PPE pairs. We

Figure 2. Phylogenetic tree of operon-paired PE and PPE proteins. Regions shaded the same color contain proteins from the same operons,
indicating similar topologies of the trees. Bootstrap values .0.50 are shown in gray. This qualitative tree similarity illustrates the notion of
coevolution in interacting protein families.
doi:10.1371/journal.pcbi.1000174.g002
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reasoned that interacting proteins would tend to be expressed at

similar times to perform their biological functions together [33–

37], and that if some of our predicted interactions were correct, we

should see non-random enrichment in coexpression of the genes

encoding the predicted complexes. Gene microarray data from

Mtb was compiled from nine published datasets covering a broad

range of experimental conditions (Table S1) in the Gene

Expression Omnibus (GEO) database [38]. Vectors of expression

values for each PE or PPE gene were generated, and used to derive

a correlation, Rij, for the expression of each PE/PPE gene pair (see

Materials and methods).

Overlap of Results from Coexpression and Coevolution
To confirm our intuition that predictions of PE/PPE coexpres-

sion and coevolution should overlap significantly, we analyzed the

distribution of the two coevolution scores (Cij and Sij) combined

with the coexpression score, Rij. The resulting distributions of the

two score combinations are shown in Figure 4. In the figure,

coevolution (Cij or Sij) is shown on the x axes; coexpression (Rij) is

shown on the y axes. Red dots represent the 14 operon pairs; green

dots represent the 182 inter-operon pairs (in which the PE and

PPE are from different operon pairs); blue dots represent the other

5,394 genomewide PE/PPE pairs. Dashed lines are drawn to

represent the upper 5% threshold for each score. Figure 4A

illustrates our earlier assessment that Cij is not a useful prediction

score due to the operon pairs not having a significantly different

distribution from all PE/PPE pairs. Also notable in Figure 4A,

only a minority of the operon pairs is found in the top 5% by both

methods (3/14 operon pairs or 21%). Figure 4B shows better

recovery of operon pairs in the top 5% by both methods (12/14

operon pairs or 86%). In light of these results, we concluded that

the paralog matching score, Sij, is superior to Cij for predicting PE/

PPE complexes. We therefore chose to combine Sij and Rij for

subsequent predictions, and Cij was not used further in this study.

The Sij and Rij scores for all PE/PPE pairs are provided in the

Supporting Information (Dataset S3).

To assess the statistical significance of the overlap between

predictions from coevolution and coexpression, we again em-

ployed a KS test. We asked whether the coexpression values of the

top 5% coevolved PE/PPE genes (excluding the operon pairs)

were higher than coexpression values of PE/PPE gene pairs

overall. We found this to be the case (KS test, P = 0.02, a= 0.05,

k = 0.09). From this we conclude that the PE and PPE proteins we

predict to interact tend to be coexpressed, which we take as

additional evidence for their possible interaction.

Specificity of Operon Pair Interactions
To assess the specificity of interaction in PE/PPE operon pairs,

we analyzed coevolution and coexpression of inter-operon pairs,

the PE/PPE pairs in which both proteins are from different

operon pairs. A KS test showed that inter-operon pairs (Figure 4,

green crosses) had significantly lower score distributions than all

other pairs by both coevolution scores, Cij and Sij, and the

coexpression score, Rij (P%0.0001 in all tests). We noticed a

bimodal distribution of Cij (Figure 4A). Using a k-means algorithm

we identified two clusters: a larger (4,208 protein pairs), positive-

valued cluster with mean Cij = 0.78 and a smaller (1,382 pairs),

negative-valued cluster with mean Cij = 20.21. The negative

cluster contained no operon pairs, and was more than twice as

likely to contain inter-operon pairs than the higher group (7% of

the negative cluster; 3% of the positive one). We interpret these

results as evidence of negative selection, both at the amino acid

and gene expression levels, against cross-reactivity of operon

paired PE and PPE proteins, and conclude that PE/PPE operon

pairs, in general, interact specifically.

Applying Our Method to Other Proteins
To demonstrate that our method is extensible to protein families

other than PE and PPE we studied the ESAT-6/CFP-10 (Esx)

family of proteins, which include some secreted antigens [39]. We

chose the Esx family because they, like PE and PPE, tend to be

found in operon pairs, some of which are known to code

interacting proteins [40–42]. We applied our method to the 22 Esx

proteins in Mtb H37Rv, in an identical manner to our analysis of

the PE/PPE pairs, and found that known Esx interacting pairs and

operon pairs, were given a high Sij (coevolution) by our method,

Figure 3. Predictive score distributions. (A) Score histogram of Cij and Sij. Notice that Cij has a high density of scores near the maximum value,
making it unsuitable for protein interaction prediction, whereas Sij gives lower scores to most PE/PPE pairs, and higher scores to relatively few. (B) Sij

plotted against Cij. PE/PPE operon pairs are shown in red. Notice that Sij preferentially assigns high scores to the operon pairs compared to Cij.
doi:10.1371/journal.pcbi.1000174.g003

Interactions of the PE/PPE Proteins of Mtb
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and that many of these were supported by a high Rij (coexpression)

(Figure S1). The Sij and Rij scores for the Esx analysis are given in

the Supporting Information (Dataset 4). We conclude that our

method has the potential to predict interactions in protein families

beyond PE and PPE.

Discussion

The 35 Highest Confidence Predictions of PE/PPE
Complexes

To generate a high-confidence set of predicted PE/PPE

complexes, we took the overlap of the top 5% by both coevolution

(Sij) and coexpression (Rij), yielding the 35 pairs shown in Table 2.

The same predicted interactions are shown in a network

representation in Figure 5. Panel A shows that 6 of the 12 operon

pairs in the top 35 predicted complexes are predicted to interact

specifically. That is, the PEs in this group do not appear to interact

with PPEs other than their operon partner, and vice versa. The

specificity of interaction in operon pairs is also suggested by the

tendency for inter-operon pairs to have low scores (Figure 4, green

crosses). Figure 5B shows predicted cross-reaction of inter-operon

pairs Rv3872/Rv1387, Rv1195/Rv3478, Rv3477/Rv1196, and

Rv2769c/Rv1039c. Notice that the inter-operon interactions in

Figure 5 are between pairs of proteins in the same colored regions

in the phylogenetic trees in Figure 2, suggesting that pairs of

paralogs with sufficiently similar sequences (nearby on a tree)

could also cross-react. A high degree of mRNA coexpression

(Table 2) provides additional evidence that there could be some

cross reactivity between these PE/PPE operons. Cross-reactivity

between genome-paired Esx proteins has been noted previously in

Mtb [40], and it may be that the subunits of closely related PE/

PPE complexes can similarly cross-react to confer functional

flexibility as with the Esx family. However, our finding of negative

coevolution and coexpression of the majority of the 196 possible

inter-operon pairs (Figure 4) suggest that the four interactions we

predict are exceptions rather than the rule.

Figure 5C shows possible cell surface-associated PE/PPE

complexes. Four of the 6 PE proteins are PE_PGRS proteins

(Rv0109, Rv0754, Rv1803c, and Rv2487c,), which are thought to

be variable surface antigens displayed on the exterior of Mtb cells

[5]. The other two PE proteins (Rv0151c and Rv0160c) were

predicted in a previous study to contain membrane beta barrels

[43], and thus are also likely localized to the cell surface. The PE

and PPE proteins here appear to have multiple interaction

specificities, particularly PE proteins Rv0160c and Rv0754, each

of which is linked to several PPEs. Rv0160c and Rv0754 also have

overlapping patterns of interaction as they share three predicted

PPE partners: Rv0355c, Rv0442c, and Rv1801. However, in

contrast to the example of Rv1195 and Rv3477 (Figure 5B),

Rv0160c and Rv0754 do not have remarkably high sequence

similarity (58%; both proteins are more similar to many other PEs)

or close distance in the PE phylogenetic distance matrix. We

would therefore conclude that the patterns of cross-reactivity

shown in Figure 5C cannot be explained simply by sequence

similarity. Future structural studies could reveal the detailed

residue interactions responsible for complex formation among

these proteins. Because of the possible cell surface localization of

the proteins in Figure 5C, it may be that they are part of

multiprotein cell-surface complexes involving varying combina-

tions of PPE proteins interacting with surface-localized PE

Figure 4. mRNA coexpression versus coevolution of M. tuberculosis PE/PPE gene pairs. Coevolution scores are shown on the x axis, mRNA
coexpression scores are shown on the y axis. Red crosses represent pairwise scores for the 14 operon pairs; green crosses represent the 182 possible
inter-operon pairs; blue crosses represent scores for the remaining 5394 genomewide PE/PPE pairs. Black dashed lines mark the upper 5% threshold
for each score. (A) Rij vs. Cij, (B) Rij vs. Sij. In each of the panels, the region that is over the top 5% by both methods would be considered a combined
prediction set. Notice that Sij offers superior operon pair recovery over Cij. Notice also that inter-operon pairs (green crosses) tend to have a low
degree of coevolution (Cij and particularly Sij), implying negative selection against promiscuous interactions of operon paired PE and PPE proteins.
doi:10.1371/journal.pcbi.1000174.g004
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proteins. We truncated all proteins to include only the PE or PPE

domains; therefore our method predicts that PE_PGRS and

membrane-associated PE proteins interact with PPEs through

their PE domains. All of these interpretations await experimental

confirmation.

Two of the 14 Mtb H37Rv operon pairs (Rv1040c/Rv1039c

and Rv3622c/Rv3621c) were not among the 35 putatively

interacting PE/PPE pairs identified by our procedure. Both of

these operon pairs exceeded our coevolution (Sij) threshold, but

were slightly below our coexpression (Rij) threshold of 0.34

(Rij = 0.26 and 0.25, respectively; see also Figure 4). Employing a

lower Rij threshold, for example the 85th percentile (Rij = 0.24),

would result in the predicted interaction of all 14 operon pairs.

Including Non-Interface Residues in Complex Predictions
To predict new PE/PPE interactions we analyzed sequences

homologous to the interacting domains in the known PE/PPE

complex [13], without explicitly limiting our analysis to defined

interface residues between the subunits as in [44]. We reasoned

that, because both PE and PPE are helical, that in different

paralogous complexes the registry of the helices could change,

bringing different residues into the interface. This may be

especially true for PE and PPE, which are highly elongated in

shape (the characterized PE/PPE complex is about 108 Å long by

26 Å wide [13]), and, as a result, most residues in either subunit

are near (within 10 Å) a residue in the other subunit.

Computational and experimental studies [29,45] have found

evidence for energetic coupling of distant residues (.10 Å) in a

number of protein families. While these studies focused on protein

monomers, it is possible that the finding of long-range residue-

residue interactions could also apply to complexes. With this in

mind, we were cautious about excluding regions homologous to

either subunit in which a mutation might not be ‘felt’ in the other

subunit.

To test whether excluding residues distant from the complex

interface would influence our results, we inspected the PE/PPE

structure [13] and found a contiguous region spanning residues

101–148 of the PPE with C-a distances greater than 10 Å from the

nearest residue of the PE. We constructed a modified PPE

alignment omitting these residues (and homologous regions of

aligned PPE proteins) and repeated our analysis, and found no

significant change in the distance matrix made from the unmodified

PPE alignment (correlation of PE and modified PPE distance

matrices = 0.84; no improved correlations in 106 matrix shufflings).

We conclude that including some non-interface residues, at least in

the case of PE/PPE, did not significantly bias our results.

Predicting Complexes from One or Many Genomes
The large expansion of the PE and PPE genes in Mtb [12]

allowed us to obtain results using the genome sequence of Mtb

strain H37Rv alone, without bringing in data from other genomes.

Our method could therefore in principle be applied to large

families of interacting paralogs in microbial genomes without

necessarily having any closely related genome sequences from

other microbes.

To explore whether adding genome data from other mycobac-

teria would improve our results, we searched an additional 14

mycobacterial genomes for PE/PPE operon pairs. Orthologs to

H37Rv PE/PPE operon pairs are summarized in Figure S2.

Ninety additional operon pairs were found, adding to the 14 of

Mtb H37Rv to give 104 operon pairs in total. However, only 24 of

these operon pairs had PE or PPE domains with amino acid

sequences different (usually just by an amino acid or two) from the

14 H37Rv operon pairs. The 38-protein reference matrices

derived from multiple genomes showed a reasonable increase in

correlation over the 14-protein reference matrices from H37Rv

(0.91 up from 0.84; no higher correlations yielded by shuffling the

matrices’ gene order 106 times). No clear improvement in the

Figure 5. Network representation of predicted PE/PPE complexes. Proteins are nodes, interactions are edges. PE proteins are red; PPE
proteins are blue. Proteins are labeled with their ORF numbers and gene names in parentheses. Operon pair interaction edges are black; inter-operon
interactions are green; other interactions are gray. (A) PE/PPE operon pairs predicted to interact specifically. (B) Operon pairs with flexible interaction
specificity, including some inter-operon pairings. (C) Interactions of PE_PGRS and other probable cell wall-associated PE proteins (Rv0151c and
Rv0160c) with various PPE proteins.
doi:10.1371/journal.pcbi.1000174.g005
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results was evident from using the multi-genome set of operon

pairs (data not shown), perhaps because each of the added 24

sequences was highly similar to one already in the 14 H37Rv

operon pairs. However, it is likely that as still more mycobacterial

genomes are sequenced, new sequence variants of PE and PPE

domains will be discovered, and this may improve our results.

In the five Mtb strains analyzed, 65/70 or 93% of the operon

pairs were conserved (Figure S2). Five operon pairs were missing

either the PE or PPE protein. In particular, the Mtb C strain has

single-gene deletions in three operon pairs (Rv1040c/Rv1039c,

Rv1806/Rv1807, and Rv2107/2108. It is possible that in Mtb

strains with ‘broken’ operon pairs, another interacting partner is

able to interact with the orphaned gene, possibly restoring the PE/

PPE complex’s function, or introducing new complexes that help

these strains survive in their environmental niches.

It is possible that a single Mtb strain (in this case H37Rv), in which

the PE and PPE families are more expanded relative to other

mycobacteria [12], provides a broad sampling of the tolerated residue

variations in these families, as proteins with many paralogs are

thought to be under negative selective pressure on their interactions

with paralogs other than their cognate partner [46]. Thus, the more

specifically interacting PE/PPE protein pairs there are in a genome,

the more residue variation we might see, due to positive selective

pressure on interaction specificity. The extent of interaction

promiscuity between the PE and PPE families is unknown, but our

observations are consistent with negative selection on promiscuous

Table 2. The 35 predicted PE/PPE complexes which are in the top 5% by both coevolution and coexpression methods.

PE ORF PE gene PPE ORF PPE gene Genomic distance (bp) Sij Rij Operon pair

Rv3872 PE35 Rv3873 PPE68 31 0.97 0.78 o

Rv2431c PE25 Rv2430c PPE41 47 0.97 0.54 o

Rv2107 PE22 Rv2108 PPE36 56 0.97 0.34 o

Rv1806 PE20 Rv1807 PPE31 27 0.97 0.79 o

Rv1195 PE13 Rv1361c PPE19 193141 0.97 0.62

Rv1169c PE11 Rv1168c PPE17 18 0.97 0.82 o

Rv0916c PE7 Rv0915c PPE14 15 0.97 0.52 o

Rv0754 PE_PGRS11 Rv0355c PPE8 411480 0.97 0.49

Rv3477 PE31 Rv1361c PPE19 2048983 0.96 0.75

Rv2769c PE27 Rv2768c PPE43 80 0.96 0.39 o

Rv1386 PE15 Rv1387 PPE20 3 0.96 0.65 o

Rv1195 PE13 Rv1196 PPE18 47 0.96 0.73 o

Rv0160c PE4 Rv0442c PPE10 340312 0.96 0.43

Rv3477 PE31 Rv1196 PPE18 1855889 0.95 0.74 x

Rv0754 PE_PGRS11 Rv1753c PPE24 1133701 0.95 0.38

Rv3477 PE31 Rv3478 PPE60 37 0.94 0.90 o

Rv2769c PE27 Rv1039c PPE15 1915686 0.93 0.47 x

Rv1788 PE18 Rv1789 PPE26 14 0.93 0.51 o

Rv1195 PE13 Rv3478 PPE60 1854325 0.93 0.66 x

Rv0754 PE_PGRS11 Rv1918c PPE35 1319736 0.93 0.35

Rv0754 PE_PGRS11 Rv1801 PPE29 1194088 0.91 0.46

Rv1791 PE19 Rv1789 PPE26 1933 0.88 0.38

Rv0160c PE4 Rv1801 PPE29 1851562 0.87 0.58

Rv2487c PE_PGRS42 Rv1808 PPE32 744151 0.84 0.34

Rv0285 PE5 Rv0286 PPE4 3 0.84 0.82 o

Rv0754 PE_PGRS11 Rv0305c PPE6 470448 0.83 0.50

Rv0160c PE4 Rv0388c PPE9 277020 0.83 0.34

Rv0160c PE4 Rv0355c PPE8 234338 0.80 0.50

Rv3872 PE35 Rv1387 PPE20 1621654 0.79 0.35 x

Rv1803c PE_PGRS32 Rv2608 PPE42 888204 0.79 0.36

Rv0754 PE_PGRS11 Rv3539 PPE63 1277590 0.79 0.45

Rv0109 PE_PGRS1 Rv3539 PPE63 562813 0.79 0.35

Rv0151c PE1 Rv3558 PPE64 588834 0.78 0.45

Rv0754 PE_PGRS11 Rv0442c PPE10 313945 0.77 0.35

Rv0160c PE4 Rv3558 PPE64 600222 0.76 0.40

In the operon pair column, o = operon pair and x = inter-operon pair. Notice that 12 of the 14 operon pairs are predicted in this set. Notice also the numerous PE and PPE
genes which are not in the operon pairs, four inter-operon pairs and several members of the PE_PGRS subfamily.
doi:10.1371/journal.pcbi.1000174.t002
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interaction. This suggests that there may be some advantage to Mtb in

maintaining interaction specificity of PE and PPE proteins, at least in

those that are operon-paired (and which we also predicted to interact

with some degree of specificity, Figure 5A). We conclude that our

analysis was not significantly affected by the inclusion of only a single

genome, and that this could be a useful approach for mining the

interactions of newly sequenced genomes for which there are initially

no (or just a few) related genomes to compare to.

Differences of Our Method with Related Methods
Related prediction methods [20,21,24] that compared phylo-

genetic distance matrices relied on a training set of experimentally

determined protein-protein interactions to build the reference

matrices, or large sets of orthologs of a few known interacting

proteins [25]. At the time of this study, there is only a single

experimentally characterized PE/PPE interaction [13]. We

resolved this impasse by employing the operon method [15–18]

to define a high-confidence set of predicted interactions (including

the known complex) to build phylogenetic distance matrices

capable of capturing some of the residue covariation patterns in

PE/PPE complexes. The validity of our results depends on future

verification of this assumption. Even so, the high degree of

coevolution and coexpression seen in operon-paired PE/PPE

genes, combined with definitive experimental characterization of

at least one PE/PPE complex [13], implies that our assumption

that operon-paired PE/PPE genes code complexes is fair.

Testing Predictions
We envision testing the PE/PPE complexes predicted by our

approach with a scalable high-throughput strategy. Rapid cloning

methods such as ligation-independent cloning (LIC) [47–49] could

be employed to rapidly build up PE/PPE co-expression plasmids

like that described for the Rv2431c/Rv2430c complex [13]. These

strategies allow the experimentor to avoid time-consuming

restriction and ligation steps during cloning. Using LIC, putative

PE/PPE complexes could rapidly be screened to assess whether

further study, including structural characterization, would be

worthwhile. Using our set of predicted interactions to prioritize

experiments would likely reduce the required number of assays to

successfully characterize complexes. As all PE/PPE pairs in our set

of operon pairs were found in the top 5% of predictions it is possible

that the success rate of such prioritized assays, relative to all-vs-all

screening, could be increased by an order of magnitude or more.

Conclusions
A method for predicting the interactions of the PE and PPE

families of proteins in M. tuberculosis, beyond those simply linked by

the operon method, is proposed. The method combines known

interacting domain structure, genomic operon organization, and

protein coevolution, and predicts that 35 pairs of PE and PPE

proteins interact. Our method can be applied to a single genome if

sufficient numbers of paralogs are present, or could be used in a

multi-genome framework. A subset of the predictions from our

coevolution-based method is confirmed by high mRNA coexpres-

sion, suggesting their biological relevance, and likely weeding out

false positives. Our results may be a useful starting point for

experimentally probing the interactions of PE, PPE, and other

microbial protein families.

Materials and Methods

Identifying Same-Operon PE/PPE Gene Pairs
Annotations for the Mtb H37Rv genome were downloaded from

the NCBI FTP site (ftp://ftp.ncbi.nih.gov). PE and PPE genes

were identified from these annotations. The gene coordinates and

orientation information provided in the annotations were used to

compile a list of adjacent PE/PPE pairs in the same orientation,

with the PE protein located 59 (upstream) to the PPE protein, and

with no more than 100 base pairs intergenic separation. Increasing

the intergenic distance cutoff to 500 base pairs did not result in any

additional PE/PPE pairs.

Analysis of E. coli Complexes and Operons
280 multiprotein complexes involving 692 proteins, and 2,909

unique operons involving 4,510 genes, were extracted from the

EcoCyc database [30]. A total of 1918 pairwise protein

interactions were found in the complexes. Of these pairs, 942 or

49% of the pairs were also found together in an operon. To assess

the significance of the overlap, the identities of the proteins in the

complexes were randomized (each protein was replaced with a

unique, random E. coli protein), and the co-occurrence in operons

was reassessed. One thousand shuffling trials were performed and

the overlap of 49% was not met or exceeded in any of the trials.

The maximum overlap achieved in any trial was 2%.

Structure-Based Multiple Alignments of PE and PPE
Families

For each of the PE and PPE families, family member sequences

were selected from the SwissProt database [50] by two criteria: 1.

the sequence was annotated as belonging to either the PE or PPE

protein families in Pfam, or 2. the protein was otherwise annotated

as belonging to one of these families. Multiple alignment of the

protein sequences was performed using the ClustalW program

using default parameters, and a secondary structure profile

generated by the DSSP program [32] and the known structure

[13]. Alignments were visually inspected and hand-edited to omit

sequences with obvious low homology. Rv3893c (PE36), though

classified by SwissProt as a PE protein, appeared to be an outlier

and was therefore removed from the multiple alignment. Rv3892c

(PPE69), its genome-paired neighbor, was kept in the PPE multiple

alignment. Because of the omission of Rv3893c, the PE/PPE pair

of Rv3893c/Rv3892c was not included in the genome-paired

reference set. Rv3892c was included in subsequent predictions.

The resulting structure-based alignments had 87 proteins in the

PE alignment, and 65 proteins in the PPE alignment. Multiple

alignments were truncated to include only those positions

homologous to proteins in the known PE/PPE complex of

Rv2431c/Rv2430c. Rv2431c and Rv2430c are among the

shortest members of the PE and PPE families, respectively, and

inspection of the complex structure suggests that these sequences

may represent the minimal interface regions necessary to form a

complex. Many PE and PPE proteins have other domains, low-

complexity regions, and transmembrane domains C-terminal to

their PE or PPE domain. These regions are unlikely to participate

directly in the PE/PPE interaction; this was our reasoning for

removing these regions from the alignment.

Making Phylogenetic Distance Matrices for the PE and
PPE Families

From the full-family multiple alignments, Phylip distance

matrices were generated in the ClustalW program [31]. This

resulted in an 87687 matrix for the PE family and a 65665 matrix

for the PPE family. These matrices would be used subsequently in

predictions to give us the distance between any pair of PE

sequences and any pair of PPE sequences.

Next, phylogenetic distance matrices were made for just the 14

pairs of operon-paired PE and PPE proteins. This was done by
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extracting the 14 operon-paired sequences from each of the full-

family multiple alignments. The resulting subalignments were used

to generate a 14614 PE distance matrix and a 14614 PPE matrix.

Importantly, the two 14614 matrices were ordered so that the ith

protein in the PE matrix was the operon partner of the ith protein

in the PPE matrix. We would later use these matrices as ‘reference’

matrices for prediction of non-operon-paired PE/PPE complexes.

Phylogenetic Trees of PE and PPE Families
Phylogenetic trees were generated from the PE and PPE 14-

sequence subalignments using the ClustalW program [31]. The

correction for multiple substitutions was not used to generate the

trees. Bootstrapping of the trees was done within the ClustalW

program.

Inferring PE/PPE Complexes from Coevolution
Let X be the 14614 distance matrix of PE proteins, and Y be

the 14614 distance matrix of PPE proteins. Xij is the percent

divergence of PEi and PEj; likewise Yij is the percent divergence of

PPEi and PPEj. Xi is the vector of length 14 for the distances of PEi

from all PEj (including for i = j, in which case Yij = 0.0); likewise Yi.

To determine the correlation between the ordered 14614

distance matrices, X and Y, the Pearson correlation is taken. To

avoid counting protein distances twice, only the unique elements

in the matrices are taken (that is, we count i,j pairs but not j,i).

rXY ~

PL
i~1

PL
jwi

Xij{X
� �

Yij{Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
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L = 14, the number of operons with paired PE and PPE genes. rXY

is a measure of the coevolution of the operon-paired subsets of the

PE and PPE protein families.

Next we derive Cij, a measure of the coevolution of PEi with

PPEj, for all PE and PPE proteins in the Mtb genome, including

but not limited to proteins in the operon-paired set. For PEi, we

generate Ai, a distance vector of length 14, containing the distances

from PEi to each of the 14 PEk in the 14614 reference matrix. Bj is

equivalently generated for PPEj. To get Cij, a measure of the

coevolution of PEi with PPEj, the Pearson correlation of Ai and Bj

is calculated.

Cij~

P14
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Aik{Ai

� �
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� �
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Note that here we are taking the correlation of two vectors with

length 14.

To generate the paralog matching score, Sij, a reciprocal

ranking procedure was used. For each PE, a ranked list of the most

coevolved PPEs was produced. The same was done for PPEs.

Then, for each PEi, we recorded the position of each PPEj protein

in the PE’s list of PPEs ranked by Cij to give riRj, the number of

PPEs ranking below PPEj. The reciprocal procedure was

performed to yield rjRi.

Sij~
ri?j|rj?i

N

N is the total number of PE/PPE pairs. Using the above formula, a

high score is assigned only if both pairs were high on each other’s

list of most coevolved potential interacting partners.

Prediction Evaluation
Positive examples of PE/PPE complexes were defined as all of

the 14 operon-paired proteins. A dataset of negative PE/PPE

interactions are not currently available, so we made the

assumption that operon-paired PE/PPE interactions were specific,

and therefore a PE in one operon would not interact with a PPE in

a different operon. 182 inter-operon PE/PPE pairs resulted, and

were used as a negative set.

Next, for a range of prediction thresholds from 0.0 to 1.0, true

positive (TP), true negative (TN), false positive (FP), and false

negative (FN) rates were determined. The sensitivity, or true

positive rate (TPR), was calculated as

TPR~
TP

TPzFN

1-specificity, or the false positive rate (FPR), was calculated as

FPR~
FP

FPzTN

In a receiver operator characteristic curve (not shown), the

prediction threshold corresponding to the upper left-most portion

of the curve represents the optimum compromise between TPR

and FPR. For prediction with Sij, this threshold was roughly 0.75.

Taking all PE/PPE pairs with Sij$0.75 gives roughly 5% of the

total 5,590 possible PE/PPE pairs, in which all 14 of the operon

pairs were included.

Analysis of mRNA Coexpression of PE and PPE Genes
Nine Mtb gene expression datasets (Table S1) in the Gene

Expression Omnibus (GEO) [38] were downloaded. All available

Mtb datasets in GEO were used excluding for consistency those

that studied deletion mutants or attenuated strains. Also for

consistency, only datasets that reported gene expression changes as

a ratio of a sample and a reference were used. Gene expression

data from the nine studies were represented as a matrix where the

rows were genes and the columns were experiments. To construct

an expression vector for a gene, the data from each of the nine

studies were concatenated. Combined expression vectors were

made up from the field labeled ‘VALUE’ in the data files. In all

data sets, this value represents the measured expression level of a

gene under experimental conditions versus that gene in a reference

sample. Various normalization schemes were applied by the

authors of the individual datasets to correct for scale differences

due to differing intensities among genes in response to different

experiments. Because of the difficulty in combining these schemes

to make a self-consistent combined dataset, we chose not to further

normalize the expression data.

Correlation coefficients of gene expression vectors were

calculated for all possible pairs of genes. To obtain a correlation

coefficient for genes i and j over N experiments, the Pearson

correlation coefficient, Rij, was used.

Rij~

PN
experiment x

gix{gið Þ gjx{gj
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where gix and gjx are the expression values reported in the GEO

data file for genes i and j, respectively, in experiment x. For each

pair of genes analyzed, combined expression vectors were

truncated by deleting experiments in which either or both genes

had missing values. Thus N varied for each pair of genes assessed.

In all, 734 experiments were used for the inference of pairwise

coexpression relationships between pairs of PE and PPE genes.

Statistical Significance Tests
The Kolmogorov–Smirnoff (KS) test asks whether two collec-

tions of random samples come from the same distribution. We

want to know if the coexpression scores for a group of PE/PPE

gene pairs predicted to code interacting proteins has a different

distribution (with a higher mean) than PE/PPE gene pairs overall.

Because we expect the linked proteins to have a higher-valued

mean than the unlinked proteins, we used the one-tailed version of

the KS test. An a significance criteria of 0.05 was used for

hypothesis acceptance/rejection.

Structural Analysis of PE/PPE Complex
The PE/PPE complex described in [13] was analyzed using the

RasMol program [51]. The structure was visually inspected to

identify a contiguous region spanning residues 101–148 of the PPE

with C-a distances greater than 10 Å from the nearest residue of

the PE. The PPE multiple alignment was modified by deleting all

columns that aligned to this contiguous region.

Interactions of ESAT-6/CFP-10 (Esx) Paralogs
The 22 Esx family genes were identified in Mtb H37Rv from

NCBI annotations. The genes were divided into two groups:

ESAT-6 paralogs (12 proteins) and CFP-10 paralogs (10 proteins).

We based this categorization on the observation that 20 of the 22

the Esx genes are organized into 10 adjacent (operon) pairs on the

genome, with a gene similar to CFP-10 lying upstream from a

gene similar to ESAT-6. We therefore categorized upstream genes

as CFP-10 paralogs and downstream genes as ESAT-6 paralogs.

The two annotated Esx genes not in operon pairs, Rv1793 and

Rv3017c, were both judged to be ESAT-6 paralogs from visual

inspection of a multiple alignment. The 10 Esx operon pairs were

used to build reference matrices as with PE and PPE. Coevolution

(Sij) and coexpression (Rij) scores were derived using the same

procedure as for PE and PPE.

Detection of PE/PPE Operon Pair Orthologs in Multiple
Genomes

For each PE or PPE gene in an operon pair, orthologs were

manually extracted from the TB Database (http://www.tbdb.org).

The results are summarized in a tab-delimited file in the

Supporting Information (Dataset 5).

Proteins Analyzed
The ORF identifiers, gene names, and SwissProt accession

codes of the PE and PPE proteins analyzed in this study are listed

in Text S1.

Supporting Information

Dataset S1 Structure-based alignment of PE proteins.

Found at: doi:10.1371/journal.pcbi.1000174.s001 (0.04 MB

DOC)

Dataset S2 Structure-based alignment of PPE proteins.

Found at: doi:10.1371/journal.pcbi.1000174.s002 (0.05 MB

DOC)

Dataset S3 Paralog matching scores Sij, coexpression scores Rij,

and operon pair information for all PE/PPE pairs.

Found at: doi:10.1371/journal.pcbi.1000174.s003 (0.32 MB

TXT)

Dataset S4 Paralog matching scores Sij, coexpression scores Rij,

and operon/interaction information for Esx proteins.

Found at: doi:10.1371/journal.pcbi.1000174.s004 (0.00 MB

TXT)

Dataset S5 For each PE or PPE gene in an operon pair,

orthologs in mycobacterial genomes were manually extracted from

the TB Database (http://www.tbdb.org). The results are summa-

rized in this tab-delimited file.

Found at: doi:10.1371/journal.pcbi.1000174.s005 (0.00 MB

TXT)

Figure S1 Predicted interactions of ESAT-6/CFP-10 (Esx)

family proteins. Interactions are scored by Sij and Rij. Esx pairs

not in operons are shown as blue crosses; operon pairs are green;

operon pairs found in experiments to interact are red; non-operon

pairs found to interact are magenta. Notice that all known

interactions (red and magenta) and nearly all operon pairs (green)

tend to be highly scored by our method (tending towards the upper

right of the plot), suggesting our method’s applicability to other

protein families.

Found at: doi:10.1371/journal.pcbi.1000174.s006 (11.34 MB TIF)

Figure S2 Comparative genomic analysis of PE/PPE operon

pairs. The ORF identifiers of PE/PPE operon pairs from H37Rv

are shown on the left on alternating gray and white backgrounds.

Genomes containing orthologous operon pairs are shown at the

top, with Mtb genomes shaded in cyan. Red rectangles show the

presence of PEs; blue show PPEs. White spaces indicate that no

ortholog was found in that genome. Notice that the PE/PPE pairs

appear well-conserved in Mtb and M. bovis strains, and that a few

operon pairs are disrupted by the loss of a gene in the Mtb

CDC1551, C, and F11 strains.

Found at: doi:10.1371/journal.pcbi.1000174.s007 (16.58 MB TIF)

Table S1 Gene expression datasets used.

Found at: doi:10.1371/journal.pcbi.1000174.s008 (0.04 MB

DOC)

Text S1 Accession numbers. ORF identifiers, gene names, and

SwissProt accession codes for proteins analyzed in this study.

Found at: doi:10.1371/journal.pcbi.1000174.s009 (0.14 MB

DOC)
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